Oil Pollution Solutions

oil pollution sollution

Oil Pollution in the Marine Environment

by Kristin deNesnera and Satina Ciandro

In this “hands-on” module, students learn about: sources of oil pollution in the marine environment; the effects of oil pollution on marine life, human health, and economies; examples of major oil spills; and the challenges involved in responding to and cleaning up an oil spill.

Students learn: 1) How human activities cause oil pollution, 2) How oil pollution affects marine resources, the environment, 3) About various oil spill clean-up technologies and sorbent materials absorptivity, and 4) About the challenges related to oil spill clean-up.

A video to accompany an inquiry based educational activity (module) used in the SCWIBLES program. Created by Kristin de Nesnera.

Docs: fulltext.pdf   lecture.pdf   activity.docx   costchart.docx
Keywords: clean up, data, engineering, HS-ESS3.A, HS-ESS3.C, HS-ETS1.C, HS-ETS2.B, explanations, investigations, marine, math, models, oil pollution, HS-PS1.A, questions, scale, stability, structure, systems

Controlling DNA

controlling DNA

Ethical Guidelines for the Use of DNA Technology

by Tara Cornelisse

In four 2-hour class sessions, AP Biology students receive enriched, in-depth Power Point lectures that accompany their study of Campbell’s AP Biology textbook to explain the mechanics of DNA modification, and engage in two different group activities to apply their understandings of both science and social issues through engaged ethical reasoning, debate, and presentations.

Docs: Fulltext.pdf   Worksheet.pdf   Lecture 1.pdf   Lecture 2.pdf
Keywords: bioethics, communication, debate, DNA, HS-ETS2.A, HS-ETS2.B, HS-LS3.A

Why Do Organisms Vary?

why do organisms varyGenetic and Environmental Contributions to Trait Variation

by Beth Bastiaans and Ryan Kuntz

In this 2-month project, students design an experiment to assess phenotypic variation in one or more traits. Students use Wisconsin Fast PlantsTM (Brassica rapa). In a breeding experiment, they select a trait and analyze it during two generations of plants. Students create a pedigree by cross-pollinating the first generation with those of other students to generate a second generation of seeds with known parentage. They use linear regression to measure similarity of the selected trait in both generations. The second experiment begins with the offspring generation: students select an environmental variable, and plant enough of those offspring seeds to control that variable, again measuring the selected trait, and using linear regression to analyze effectiveness of that environmental factor.

Docs: Fulltext.pdf
Keywords: argument, data, HS-ETS2.B, explanations, genetic traits, investigations, HS-LS1.B, HS-LS3.A, HS-LS3.B, HS-LS4.B, math, organisms, phenotype, questions, variation

Roadkill Reduction with GIS

road-kill reduction with GIS

Learning to Use Layers

by Beth Bastiaans and Dan Johnston

What factors influence roadkill densities on our streets and highways? What steps can we take to protect wildlife? In this 2-hour module, students use Google Earth to learn how Geographical Information Systems (GIS) technology can help solve environmental problems. They also develop and test their own original hypotheses about roadkill, a familiar, local environmental issue. By combining multiple GIS layers in Google Earth, students develop and test hypotheses about which other landscape features may be correlated with roadkill frequency. Finally, the students discuss the difference between correlation and causation and what factors might bias their analyses.

Docs: Fulltext.pdf
Keywords: argument, causation, cause, communication, correlation, data, HS-ESS3.C, HS-ETS2.A, HS-ETS2.B, explanations, GIS, investigations, layers, math, patterns, questions, roadkill, systems

Filtering out Pollution

filtering out pollutionLowering Turbidity to Increase Water Quality

by Tara Cornelisse and Ruben Mejia

In this lab activity, students learn what turbidity is and how to measure it using a turbidity sensor connected to a data logger. Students then use an array of readily available materials to investigate how to build a water filter that efficiently reduces turbidity.

Docs: fulltext.pdf
Keywords: build, data, HS-ESS3.A, HS-ESS3.C, HS-ETS1.C, HS-ETS2.B, explanations, investigations, HS-PS1.A, questions, turbidity, water, water filter, water quality