Size Matters

size mattersUnderstanding the Surface Area-to-Volume Ratio

by Caleb Bryce, Kimberly Goetz, Pablo Barrick and Sarah Baumgart

The surface area-to-volume relationship is important for the function of both living things (ex: lung anatomy, tree roots, cell size, brain vascularization) and many human-made objects (ex: car radiators, air conditioning units). By understanding that surface area increases at a slower rate than volume as objects get larger, students can appreciate: why small cell size is advantageous; why plants benefit from a branched network of stems, leaves and roots; and why a variety of everyday objects are shaped and sized the way they are.

In this module, students learn: 1) About the relationship between surface area and volume, 2) Why this relationship is important for cells in our body.

Fellows Kim Goetz and Caleb Bryce produced this video explaining the concept of surface area to volume. A diffusion experiment using colored agar cubes, and various real life examples are used to help students understand this concept.

Docs: fulltext.docx   presentation.pptx   worksheet.docx   worksheetkey.docx
Keywords: HS-ETS1.B, HS-LS1, HS-LS1.B, HS-LS1.F, HS-LS1.G, surface area, volume

Contour What?

contour whatby Timothy Norris and Will Federman

This modules is designed as an introduction to understanding topographic maps and GIS using Google Earth. Students perform a computer lab activity to learn how to read topographic maps, measure geographical features, and use geographic information systems (GIS).

Docs: fulltext.docx   lab.pdf   lecture.pdf
Keywords: argument, communication, contour, data, HS-ESS3.A, HS-ESS3.C, HS-ETS1.B, HS-ETS1.C, explanations, GIS, Google Earth, investigations, mapping, patterns, scale, systems

Vehicles Powered on Waste

vehicles powered on waste

Producing Biodiesel from Used Vegetable Oil

by Jennie Liss Ohayon, Mark Sterrett and Ryan Kuntz

In this lab, students learn how to think about what makes the energy in vegetable oil available to use for vehicle engines. They learn about the chemical reactions that produce biodiesel, and why these chemical reactions are needed to produce vehicle-ready fuel. They practice making biodiesel, and compare the results when they use different amounts of catalyst, and when they use either new or used vegetable oil.

Docs: fulltext.pdf
Keywords: biodiesel, catalyst, chemical reactions, data, energy, HS-ESS3.B, HS-ETS1.B, explanations, investigations, HS-PS3.A, HS-PS3.D, questions, structure, vegetable oil